The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
#
Find similar titles
- (rev. 10)
- Hyungyong Kim
Structured data
- Date Published
- Publisher
- Nature
- URL
- http://www.nature.com/nature/journal/vaop/ncurrent/full/nature10983.html
Table of Contents
주요 내용 #
Breast cancer와 관련된 Genomic (CNV) Transcriptomic (Gene expression) 유전자변화 종합 분석하고, 그룹화
- Genome-Wide Human SNP Array 6.0 997 tumours, 473 normals
- Illumina HT-12 v3 997 tumours, 144 normals
- Each patients have survival data and clinical features
This data are shared on behalf of METABRIC.
A breast cancer population genomic resource #
Genome variation affects tumor expression architecture #
Expression outliers refine the breast cancer landscape #
Trnas-acting association reveal distinct modules #
Integrative clustering reveals novel subgroups #
Pathway deregulation in the integrative subgroups #
Discussion #
Supplement #
8. Segmentation and copy number alteration calling using CBS #
Normalisation of intensities #
Genome-Wide Human SNP Array 6.0 데이터는 aroma.affymetrix를 써서 normal, tumor 각각 독립적으로 정규화함 (Copy-number estimation using Robust Multichip Analysis (CRMAv2)) - 270 HapMap 데이터 포함.
각각의 샘플에 대해
- allelic-crosstalk calibration
- probe sequence effects normalisation
- probe-level summarisation
- PCR fragment length normalisation
을 수행하고, log2 intensity 값들을 얻음. 그리고 이어서,
- genomic position에 따라 probe 정렬
- replicate probes는 median 값으로 요약
- missing values는 snapCGH의 loess procedure로 impute
- QC metrics
- normalised unscaled standard error
- relative log expression
- signal-to-noise ratio of the log2 intensity data
Two pooled references
- median intensities across the MapMap individuals
- normal/tumour median intensity values (473 normals)
Calling of copy number alterations and adjustment for tumour cellularity #
DNAcopy 470 normals and 270 HapMap samples
DNAcopy Tomour samples, MergeLevels algorithm
Somatic copy number states:
$$ K_{CNA} = \{HOMD, HETD, NEUT, GAIN, AMP\} $$
Identification of germline CNVs #
$$ K_{CNA} = \{CNVLOSS, CNVGAIN\} $$
Gene-centric alterations #
Probe-level alterations #
Measures of genomic instability #
Identification of recurrent alterations #
9. Segmentation and copy number alteration calling using HMM #
Normalisation of intensities #
6-state HMM for segmentation and discrete copy number prediction in normals #
HMM-Dosage for segmentation and discrete copy number prediction in tumors #
Gene-centric alterations #
10. Comparison of segmentation methods based on MPLA #
Incoming Links #
Related Datasets (Dataset 0) #
Suggested Pages #
- 0.160 TPX2
- 0.116 eQTL
- 0.114 CPT1A
- 0.033 2015 통계유전학워크숍
- 0.024 RNA editing
- 0.024 GenesWell BCT
- 0.024 IRB
- 0.024 Bioconductor
- 0.024 GWAS
- 0.023 CBS
- More suggestions...