PIC has become the most widely applied formula for genetic studies to measure the information content of molecular markers.
마커의 heterozygosity는 개체별로 해당 좌위가 hetero한지를 설명함
$$ H = 1 - \sum\limits_{i = 1}^{l} {P_{i}^{2} } $$
마커의 PIC는 집단내에서 얼마나 다형인지를 설명함 - 마커의 검정력
$$ {\mathbf{PIC}} = 1 - \sum\limits_{i = 1}^{l} {\mathop P\nolimits_{i}^{2} } - \sum\limits_{i = 1}^{l - 1} {\sum\limits_{j = i + 1}^{l} 2 } \mathop P\nolimits_{i}^{2} \mathop P\nolimits_{j}^{2} = 1 - \sum\limits_{i = 1}^{l} {\mathop P\nolimits_{i}^{2} } - \left( \sum\limits_{i = 1}^{l} {\mathop P\nolimits_{i}^{2} } \right)^{2} + \sum\limits_{i = 1}^{l} {\mathop P\nolimits_{i}^{4} } $$
관련논문
- PICcalc: An Online Program to Calculate Polymorphic Information Content for Molecular Genetic Studies Biochemical Genetics
Incoming Links #
Related Articles (Article 0) #
Suggested Pages #
- 0.240 HISAT
- 0.149 DNA barcoding
- 0.102 Robust relationship inference in genome-wide association studies
- 0.094 PyCon Korea 2014 “DNA 데이터로 가족찾기” 발표 후기
- 0.070 Challenges in analysis and interpretation of microsatellite data for population genetic studies
- 0.025 Hyungyong Kim
- 0.020 Cytochrome c oxidase subunit I
- 0.017 Machine learning for Genomics
- 0.013 Computer vision
- 0.013 Hyungyong Kim/rsa.pub
- More suggestions...