HOMER
#
Find similar titles
- (rev. 5)
- Hyungyong Kim
Structured data
- About
- Motif discovery
- Programming Language
- C++
- Perl
- URL
- http://homer.ucsd.edu/homer/index.html
HOMER (Hypergeometric Optimization of Motif EnRichment) is a suite of tools for Motif discovery and NGS analysis. HOMER was primarily written as a de novo motif discovery algorithm and is well suited for finding 8-20 bp motifs in large scale genomics data. HOMER contains many useful tools for analyzing ChIP-seq, GRO-seq, RNA-seq, DNase-seq, Hi-C and numerous other types of functional genomics sequencing data sets.
Functions #
- Basic NGS analysis
- makeBigWig.pl
- getDifferentialPeaksReplicates.pl
- annotatePeaks.pl
- analyzeRNA.pl
- analyzeRepeats.pl
- getDiffExpression.pl
- Additional analysis
- tagDir2bed.pl
- bed2pos.pl
- pos2bed.pl
- getRandomReads.pl
- batchParalle.pl
- batchMakeTagDirectory.pl
- analyzeChIP-Seq.pl
- Motif analysis
- findMotifs.pl
- findMotifsGenome.pl
- scanMotifGenomeWide.pl
Examples #
ChIP-seq peaks.bed 파일로 motif 분석을 하고자 할 경우,
$ findMotifsGenome.pl peaks.bed hg19 output -size 200 -mask
위 명령을 수행하면, output 디렉토리에 분석 결과 자료가 html로 정리되어 제공된다. 찾은 motif를 유전체에서 찾아보려면,
$ scanMotifGenomeWide.pl motif-file hg19 -bed > scan.bed
위 명령을 수행하면, 해당 motif가 있는 영역이 BED 형식으로 저장된다.
만일, 찾은 motif의 타겟 유전자를 찾고 싶으면, annotatePeak.pl 프로그램을 사용한다. 위에서 찾은 motif 파일을 입력으로 넣을 수 있다.
$ annotatePeak.pl peaks.bed hg19 -m motifs.homer > peaks-anno-with-motif.tsv
이정도면, 이 프로그램 하나로 ChIP-seq 분석 왠만한 건 다 되는 듯.
Incoming Links #
Related Articles (Article 0) #
Suggested Pages #
- 0.190 Targeted genes by ChIP-seq
- 0.079 NarrowPeaks
- 0.070 ChIP-PED
- 0.059 DiffBind
- 0.035 Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer
- 0.025 CLC Genomics Workbench
- 0.025
- 0.025 MACS
- 0.025 Next-generation sequencing
- 0.025 Nature
- More suggestions...