The F-distribution (F 분포), also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor) is, in Probability theory and Statistics, a continuous Probability distribution. (https://en.wikipedia.org/wiki/F-distribution)
F-test에 사용된다.
$$ \begin{align} f(x; d_1,d_2) &= \frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \\ &=\frac{1}{\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1+\frac{d_1}{d_2}\,x\right)^{-\frac{d_1+d_2}{2}} \end{align} $$
Incoming Links #
Related Articles (Article 0) #
Suggested Pages #
- 0.157 Maximum likelihood
- 0.126 Markov chain Monte Carlo
- 0.063 Normal distribution
- 0.052 Statistical inference
- 0.050 Poisson distribution
- 0.050 Q-Q plot
- 0.044 Binomial distribution
- 0.042 Central limit theorem
- 0.040 Expectation maximization
- 0.032 Statistical hypothesis testing
- More suggestions...