Skip to content

Support vector machine #
Find similar titles

x

Redirected from SVM

In Machine learning, support vector machines (SVM) are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for Classification, Regression analysis and Outliers detection. (http://en.wikipedia.org/wiki/Support_vector_machine)

장점

  • high dimensional space에 효과적
  • dimension의 수가 sample 보다 많을 때 효과적
  • decision function에서 학습 지점 서브셋을 쓰며, 메모리 효율.
  • 다재다능함

단점

  • feature의 수가 sample 보다 많을 때는 kernel function을 선택하면서 overfitting을 줄여야 함
  • 직접 probability 예측을 하지 않음

Classification

  • SVC (C-Support Vector Classification)
  • NuSVC (Nu-Support Vector Classification)
  • LinearSVC (Linear Support Vector Classification)

Regression

Incoming Links #

Related Articles #

Related Codes #

Suggested Pages #

web biohackers.net
0.0.1_20140628_0