GAPIT
#
Find similar titles
- (rev. 9)
- Hyungyong Kim
Structured data
- About
- GWAS
- Programming Language
- R
- URL
- http://www.maizegenetics.net/gapit
GAPIT – Genome Association and Prediction Integrated Tool – is an R package that performs GWAS and genome prediction (or selection). This program uses state-of-the-art methods developed for statistical genetics, such as the unified mixed model, EMMA, the compressed mixed linear model, and P3D/EMMAx.
설치 #
Bioconductor를 비롯한 다양한 패키지들이 필요함
$ R
source("https://bioconductor.org/biocLite.R")
biocLite("multtest")
biocLite("chopsticks")
install.packages("gplots")
install.packages("LDheatmap")
install.packages("genetics")
install.packages("EMMREML")
install.packages("scatterplot3d")
library(multtest)
library(gplots)
library(LDheatmap)
library(genetics)
library(EMMREML)
library(compiler)
library(scatterplot3d)
source("http://zzlab.net/GAPIT/gapit_functions.txt")
source("http://zzlab.net/GAPIT/emma.txt")
구동 #
입력파일은 표현형과 유전형 파일 (Trait is simple table text, genotype is HapMap format)
$ head traits.txt
Taxa EarHT dpoll EarDia
sample1 59.5 NaN NaN
sample2 65.5 59.5 32.21933
sample3 81.13 71.5 32.421
$ head genotypes.hmp.txt
rs alleles chrom pos strand assembly center protLSID assayLSID panel QCcode sample1 sample2 sample3
snp1 C/G 1 12345 + assembly_id NaN NaN NaN NaN NaN CC CG GG
snp1 C/T 1 12345 + assembly_id NaN NaN NaN NaN NaN TT CT CC
R에서 다음처럼 수행하면 한번에 결과 계산
#Step 1: Set working directory and import data
myY <- read.table("traits.txt", head=TRUE)
myG <- read.table("genotypes.hmp.txt" , head=FALSE)
#Step 2: Run GAPIT
myGAPIT <- GAPIT(Y=myY, G=myG, PCA.total=3)
Suggested Pages #
- 0.025 Bioconda
- 0.025 Microarray
- 0.025 SNP array
- 0.025 April 13
- 0.025 Python
- 0.025 Bioinformatics
- 0.025
- 0.025
- 0.025
- 0.025 August 29
- More suggestions...