Skip to content

Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality #
Find similar titles

You are seeing an old version of the page. Go to latest version


Main questions #

유전체 스케일 Synthetic lethality 연구는 Yeast에 많이 되어 있음. 이를 바탕으로 Cancer에 적용하고자 함

Materials and methods #

DAYSY (Data mining synthetic lethality identification pipeline)을 만들었음. Cell line과 임상샘플 암유전체 데이터로부터 SL(Synthetic lethality) 후보를 통계적으로 추정함.

세가지 통계추론 과정이 적용됨

  1. Genomic survival of the fittest (SoF)
  2. shRNA-based functional examination
  3. Pairwise gene coexpression

공개된 대량 암 유전체 데이터를 위 세 추론과정을 거쳐 SL과 SDL(Synthetic dosage lethality, 하나의 과발현이 또하나를 삭제하는 경우)를 찾아냄.

Main finding of the paper #

Remaining questions to be addressed #

The biological insight that could be gained from this study #