Gradient descent (경사 하강법, Steepest descent) is a first-order iterative optimization algorithm for finding the minimum of a function. (https://en.wikipedia.org/wiki/Gradient_descent)
Gradient descent는 함수의 극대, 극소를 찾는 방법이고, Newton's method는 함수값이 0이 되는 해를 찾는 방법이다.
Suggested Pages #
- 0.025 Numerical analysis
- 0.025 뉴턴 방법
- 0.025 Isaac Newton
- 0.025 Joseph Raphson
- 0.025 Newton–Raphson method
- More suggestions...