A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
#
Find similar titles
- (rev. 3)
- Hyungyong Kim
Structured data
- Date Published
- Publisher
- Nature Communications
- URL
- https://www.nature.com/articles/s41467-019-13825-8
2,606명 암 WGS에서 추출한 Somatic passenger mutation으로 24개의 암종을 예측함.
암환자의 WGS 자료에서 somatic mutation의 분포와 종류를 학습하여, 24개의 암종을 91% 정확도로 예측함. 의외의 재밌는 점은 driver 유전자 정보를 추가했을 때 정확도가 낮아짐. 그로 인해, 제목에 passenger mutation 이라 명시
WGS 자료에서 다음의 특징들을 따로 추출하여 모델 학습에 사용하였다.
- Mutation distribution
- SNV-BIN (2897): Number of SNVs per 1-Mbp bin and per chromosome, normalised against the total number of SNVs per sample
- CNA-BIN (2826): Number of CNAs per 1-Mbp bin
- SV-BIN (2929): Number of SVs per 1-Mbp bin, and per chromosome, normalised against the total number of SV per sample
- INDEL-BIN (2757): Number of SNVs per 1-Mbp bin, and per chromosome, normalised against the total number of INDEL per sample
- Mutation type
- MUT-WGS (150): Type of single-nucleotide substitution, double- and triple-nucleotide substitution (plus its adjacent nucleotide neighbours)
- Driver gene/pathway
- GEN (554): Presence of an impactful mutation in a suspected driver gene
- MOD (1865): Presence of an impactful mutation in a gene belonging to a suspected driver pathway
Suggested Pages #
- 0.025
- 0.025 November 11
- 0.025 May 15
- 0.025 December 23
- 0.025 Cancer Research Treatment
- 0.025 August 1
- 0.025 April
- 0.025 DNA sequencing
- 0.025 BRIC
- 0.025 Angiogenesis
- More suggestions...